Trends

The Future of Lab Data Is Graph‑Based: Why a Hybrid Graph + Data Lake Wins

Olivia Wilson
4 min read
October 28, 2025
Tag
Basiic Maill iicon
The Future of Lab Data Is Graph‑Based: Why a Hybrid Graph + Data Lake Wins
Post by

Introduction

In a lab, we often think in tables: sample table, run table, instrument table. But when you ask the question how and why, you realize the structures are more like networks: this sample came from that patient, went into that instrument, ran with that reagent batch, produced that result. A graph offers the relationships. A data lake offers breadth and scale. Together, they unlock insight. In this article, I explore why the future of lab data is graph‑based, why a hybrid graph + data lake model “wins”, and how Scispot offers a path to this future.

Why Graphs Matter

When labs reach scale, simple tables don’t answer the right questions. You need to ask: “Which instrument touched this sample before failure?”, “What reports have been influenced by reagent lot Y?”, “What run features correlate across patient cohorts processed by different instruments?” These are relationship‑heavy questions, and graphs excel there. Research in life sciences shows that knowledge graphs unify heterogeneous data, enable link prediction, and drive discovery. Meanwhile, your raw data—images, files, unstructured logs—still needs somewhere to live. That’s where a lake shines.

The Hybrid Graph + Data Lake Pattern

By combining the two:

  • The data lake holds raw files, images, and bulk tables.

  • The graph holds entities (samples, runs, instruments, users) and edges (sample→run, run→instrument). Graph nodes link back to lake objects.
    So you get storage at scale and sense‑making at speed. This pattern (often called a “lakehouse” or hybrid architecture) is gaining traction: the life sciences lakehouse helps firms bring structured and unstructured data together, supporting analytics, ML, and discovery.
    Scispot’s approach: typed capture and lineage link into a graph, while allowing raw data to flow into data lakes behind the scenes. You get queries like “trace this feature back to the raw file” or “show drift vs lot Y across cohorts” in seconds, not days.

The data backbone that makes your lab AI‑ready

How Labs Use This Today

Labs might start with a simple question: “Which runs used instrument X in the past month where QC failed?” With the hybrid model, you can traverse sample‑run‑instrument relationships. Then you add “and show me the raw image files and metadata for those runs” — the link back to the lake makes that possible. As you scale, you build dashboards that span entities, listen for anomalies, feed ML pipelines, integrate CRO/CMO data, and trace lineage globally. The graph gives agility. The lake gives scale. And because you built the entity model once (typed labsheets, etc), it grows gracefully.

Why It’s A Game‑Changer

In a world where labs generate more data than ever, storage is cheap—but insight is pricey. A table‑only model hits limitations. You incur latency, you lose traceability, you bury questions in joins. The hybrid graph + lake lets you store everything, query relationships deeply, and scale elegantly. It’s the difference between “we’ve got the data somewhere” and “we understand the data so we can act on it”. When you bring in the right platform (Scispot), you avoid building your own graph infrastructure from scratch; you inherit the entity model, integration, lineage, and queries.

Conclusion

The future of lab data isn’t just big, it’s connected. A graph gives you the structure of relationships; a lake gives you the breadth of raw assets. Combine them with a platform built for labs and you unlock insight, speed, and scale. With Scispot, you’re not building the foundation next year; you’re stepping onto it now.

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

keyboard_arrow_down

Sign up for the Scispot Newsletter
Get our latest insights and announcements every month.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Check Out Our Other Blog Posts

Top 10 Benefits of LIMS: Why Scispot Is the Smart Choice for Your Lab

Discover the top benefits of a Laboratory Information Management System (LIMS) and how Scispot stands out as the best modern solution for labs seeking efficiency, compliance, and growth.

Learn more

The Compliance Paradox: Stay Agile and Still Meet CFR Part 11 and ISO 15189

Learn how you can move fast and still be compliant. Dive into ALCOA+ principles, e‑signatures, audit trails, and how Scispot helps labs stay agile while meeting regulatory standards like CFR Part 11 and ISO 15189.

Learn more

Why ELNs and Spreadsheets Don’t Cut It Anymore in Modern Diagnostics

Discover why free‑form tools like ELNs and spreadsheets are no longer sufficient for regulated, high-throughput diagnostic labs — and how Scispot’s Labsheets + Labspace model fills the gap.

Learn more